Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus.
نویسندگان
چکیده
Genes of Sulfolobus metallicus that appeared to be upregulated in relation to growth on either ferrous iron or sulfur were identified using subtractive hybridization of cDNAs. The genes upregulated during growth on ferrous iron were found in a cluster, and most were predicted to encode membrane proteins. Quantitative reverse transcription-PCR of cDNA showed upregulation of most of these genes during growth on ferrous iron and pyrite compared to results during growth on sulfur. The highest expression levels observed included those for genes encoding proteins with similarities to cytochrome c oxidase subunits and a CbsA-like cytochrome. The genes identified here that may be involved in oxidation of ferrous iron by S. metallicus are termed fox genes. Of three available genomes of Sulfolobus species (S. tokodaii, S. acidocaldarius, and S. solfataricus), only that of S. tokodaii has a cluster of highly similar open reading frames, and only S. tokodaii of these three species was also able to oxidize ferrous iron. A gene encoding sulfur oxygenase-reductase was identified as the source of the dominant transcript in sulfur-grown cells of S. metallicus, with the predicted protein showing high identities to the previously described examples from S. tokodaii and species of Acidianus.
منابع مشابه
Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes.
The crenarchaeal order Sulfolobales collectively contain at least five major terminal oxidase complexes. Based on genome sequence information, all five complexes are found only in Metallosphaera sedula and Sulfolobus tokodaii, the two sequenced Sulfolobales capable of iron oxidization. While specific respiratory complexes in certain Sulfolobales have been characterized previously as proton pump...
متن کاملGenome Sequencing of Sulfolobus sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various Sulfolobus Strains
The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2591 open reading frames (ORFs). Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization (DDH) values with the most closely related known Sulfolobus species (i.e., S...
متن کاملCopper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism.
It has been postulated that inorganic polyphosphate (polyP) and transport of metal-phosphate complexes could participate in heavy metal tolerance in some bacteria. To study if such a system exists in archaea, the presence of polyP was determined by the electron energy loss spectroscopy (EELS) procedure and quantified by using specific enzymic methods in Sulfolobus acidocaldarius, Sulfolobus met...
متن کاملThe Global Redox Responding RegB/RegA Signal Transduction System Regulates the Genes Involved in Ferrous Iron and Inorganic Sulfur Compound Oxidation of the Acidophilic Acidithiobacillus ferrooxidans
The chemical attack of ore by ferric iron and/or sulfuric acid releases valuable metals. The products of these reactions are recycled by iron and sulfur oxidizing microorganisms. These acidophilic chemolithotrophic prokaryotes, among which Acidithiobacillus ferrooxidans, grow at the expense of the energy released from the oxidation of ferrous iron and/or inorganic sulfur compounds (ISCs). In At...
متن کاملArchaeal ApbC/Nbp35 homologs function as iron-sulfur cluster carrier proteins.
Iron-sulfur clusters may have been the earliest catalytic cofactors on earth, and most modern organisms use them extensively. Although members of the Archaea produce numerous iron-sulfur proteins, the major cluster assembly proteins found in the Bacteria and Eukarya are not universally conserved in archaea. Free-living archaea do have homologs of the bacterial apbC and eukaryotic NBP35 genes th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 73 8 شماره
صفحات -
تاریخ انتشار 2007